Degenerate Elliptic Equations - Mathematics and Its Applications - Serge Levendorskii - Livros - Springer - 9789048142828 - 15 de dezembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Degenerate Elliptic Equations - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 1993 edition

Serge Levendorskii

Preço
€ 120,99

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 2 - 11 de dez
Presentes de Natal podem ser trocados até 31 de janeiro
Adicione à sua lista de desejos do iMusic

Degenerate Elliptic Equations - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 1993 edition

0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,?) = L aa(x)?a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self - adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self - adjoint operator with discrete spectrum and for the distribu­ tion functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e))are the distribution functions of the matrix a2m(X,e) : C' -+ CU).


436 pages, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 15 de dezembro de 2010
ISBN13 9789048142828
Editoras Springer
Páginas 436
Dimensões 210 × 297 × 23 mm   ·   612 g
Idioma English  

Mostrar tudo

Mais por Serge Levendorskii