Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach - Basheer Ahmad - Livros - VDM Verlag Dr. Müller - 9783639286939 - 3 de setembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach

Basheer Ahmad

Preço
HK$ 471,70

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 26 de mai - 5 de jun
Adicione à sua lista de desejos do iMusic

Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach

It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 3 de setembro de 2010
ISBN13 9783639286939
Editoras VDM Verlag Dr. Müller
Páginas 120
Dimensões 226 × 7 × 150 mm   ·   185 g
Idioma English