Progress in Inverse Spectral Geometry - Trends in Mathematics - Stig I. Andersson - Livros - Springer Basel - 9783034898355 - 12 de outubro de 2012
Caso a capa e o título não sejam correspondentes, considere o título como correto

Progress in Inverse Spectral Geometry - Trends in Mathematics Softcover reprint of the original 1st ed. 1997 edition

Stig I. Andersson

Preço
NZD 99,64

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 22 de ago - 1 de set
Adicione à sua lista de desejos do iMusic

Também disponível como:

Progress in Inverse Spectral Geometry - Trends in Mathematics Softcover reprint of the original 1st ed. 1997 edition

most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t) uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for­ malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.


202 pages, 14 black & white illustrations

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 12 de outubro de 2012
Data do lançamento original 1997
ISBN13 9783034898355
Editoras Springer Basel
Páginas 197
Dimensões 155 × 235 × 11 mm   ·   303 g
Idioma English