Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences - Ovidiu Calin - Livros - Springer Nature Switzerland AG - 9783030367237 - 14 de fevereiro de 2021
Caso a capa e o título não sejam correspondentes, considere o título como correto

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

Ovidiu Calin

Preço
NOK 729

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 2 - 10 de jul
Adicione à sua lista de desejos do iMusic

Também disponível como:

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

 

 



760 pages, 35 Illustrations, color; 172 Illustrations, black and white; XXX, 760 p. 207 illus., 35 i

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 14 de fevereiro de 2021
ISBN13 9783030367237
Editoras Springer Nature Switzerland AG
Páginas 760
Dimensões 176 × 254 × 48 mm   ·   1,45 kg
Idioma German  

Mostrar tudo

Mais por Ovidiu Calin