Local Multipliers of C*-algebras - Springer Monographs in Mathematics - Pere Ara - Livros - Springer London Ltd - 9781447110682 - 17 de novembro de 2012
Caso a capa e o título não sejam correspondentes, considere o título como correto

Local Multipliers of C*-algebras - Springer Monographs in Mathematics Softcover Reprint of the Original 1st Ed. 2003 edition

Preço
€ 97,99

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 7 - 15 de jan de 2026
Presentes de Natal podem ser trocados até 31 de janeiro
Adicione à sua lista de desejos do iMusic

Também disponível como:

Many problems in operator theory lead to the consideration ofoperator equa­ tions, either directly or via some reformulation. More often than not, how­ ever, the underlying space is too 'small' to contain solutions of these equa­ tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition­ ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).


319 pages, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 17 de novembro de 2012
ISBN13 9781447110682
Editoras Springer London Ltd
Páginas 319
Dimensões 156 × 234 × 17 mm   ·   471 g
Idioma Inglês