Congruences for L-functions - Mathematics and Its Applications - Jerzy Urbanowicz - Livros - Springer - 9789048154906 - 15 de dezembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Congruences for L-functions - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2000 edition

Jerzy Urbanowicz

Preço
S$ 76,32

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 13 - 21 de ago
Adicione à sua lista de desejos do iMusic

Também disponível como:

Congruences for L-functions - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2000 edition

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =: O(mod2n). eld o


256 pages, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 15 de dezembro de 2010
ISBN13 9789048154906
Editoras Springer
Páginas 256
Dimensões 156 × 234 × 14 mm   ·   385 g
Idioma English