Congruences for L-functions - Mathematics and Its Applications - Jerzy Urbanowicz - Livros - Springer - 9789048154906 - 15 de dezembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Congruences for L-functions - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2000 edition

Jerzy Urbanowicz

Preço
Kč 1.250

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 22 de ago - 1 de set
Adicione à sua lista de desejos do iMusic

Também disponível como:

Congruences for L-functions - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2000 edition

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =: O(mod2n). eld o


256 pages, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 15 de dezembro de 2010
ISBN13 9789048154906
Editoras Springer
Páginas 256
Dimensões 156 × 234 × 14 mm   ·   385 g
Idioma English