Multi-objective Evolutionary Algorithms for Knowledge Discovery from Databases - Studies in Computational Intelligence - Ashish Ghosh - Livros - Springer-Verlag Berlin and Heidelberg Gm - 9783642096150 - 19 de novembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Multi-objective Evolutionary Algorithms for Knowledge Discovery from Databases - Studies in Computational Intelligence 1st Ed. Softcover of Orig. Ed. 2008 edition

Preço
€ 97,99

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 15 - 23 de jan de 2026
Adicione à sua lista de desejos do iMusic

Também disponível como:

Jacket Description/Back: Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM. The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases. Table of Contents: Genetic Algorithm for Optimization of Multiple Objectives in Knowledge Discovery from Large Databases.- Knowledge Incorporation in Multi-objective Evolutionary Algorithms.- Evolutionary Multi-objective Rule Selection for Classification Rule Mining.- Rule Extraction from Compact Pareto-optimal Neural Networks.- On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection.- Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms.- Clustering Based on Genetic Algorithms.


176 pages, 17 black & white tables, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 19 de novembro de 2010
ISBN13 9783642096150
Editoras Springer-Verlag Berlin and Heidelberg Gm
Páginas 176
Dimensões 156 × 234 × 9 mm   ·   254 g
Idioma Alemão  
Editor Dehuri, Satchidananda
Editor Ghosh, Ashish
Editor Ghosh, Susmita

Mais por Ashish Ghosh

Mostrar tudo