Data Assimilation with the Local Ensemble Transform Kalman Filter: Addressing Model Errors, Observation Errors and Adaptive Inflation - Eugenia Kalnay - Livros - VDM Verlag Dr. Müller - 9783639308129 - 5 de novembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Data Assimilation with the Local Ensemble Transform Kalman Filter: Addressing Model Errors, Observation Errors and Adaptive Inflation

Eugenia Kalnay

Preço
Kč 1.517

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 11 - 20 de ago
Adicione à sua lista de desejos do iMusic

Data Assimilation with the Local Ensemble Transform Kalman Filter: Addressing Model Errors, Observation Errors and Adaptive Inflation

Our work has addressed several issues relating to Ensemble Kalman Filter (EnKF) for assimilating real data, 1) model errors, 2) inconvenience or infeasibility of manually tuning the inflation factor when it is regional and/or variable dependent and 3) erroneously specified observation error statistics. A Local Ensemble Transform Kalman Filter (LETKF) is used as an efficient representative of other EnKF systems. For the model errors issue, we assimilate observations generated from the NCEP/NCAR reanalysis fields into the SPEEDY model. Several methods to handle model errors including model bias and system-noise are investigated. We address the second and third issues by simultaneously estimating both inflation factor and observation error variance on-line. Our research in this book suggests the need to develop a more advanced LETKF with both bias correction and adaptive estimation of inflation within the system.

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 5 de novembro de 2010
ISBN13 9783639308129
Editoras VDM Verlag Dr. Müller
Páginas 136
Dimensões 226 × 8 × 150 mm   ·   208 g
Idioma English