Sparse Representation of High Dimensional Data for Classification: Research and Experiments - Salman Siddiqui - Livros - VDM Verlag Dr. Müller - 9783639132991 - 5 de março de 2009
Caso a capa e o título não sejam correspondentes, considere o título como correto

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

Salman Siddiqui

Preço
NZD 100,70

Item sob encomenda (no estoque do fornecedor)

Data prevista de entrega 9 - 18 de jul
Adicione à sua lista de desejos do iMusic

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 5 de março de 2009
ISBN13 9783639132991
Editoras VDM Verlag Dr. Müller
Páginas 64
Dimensões 104 g
Idioma English